Python Programming

Lecture 10 Data Organization and Visualization

10.1 Pandas (3)

Data Organization

Data of Crowdfunding Projects

Kickstarter Projects from Kaggle.com
More than 300,000 kickstarter projects.
Loading .csv file

df = pd.read_csv("ks-projects-201801.csv")

relative path


df = pd.read_csv("data/ks-projects-201801.csv") # Linux or OSX
df = pd.read_csv("data\ks-projects-201801.csv") # Windows

absolute path


file_path = '/home/ehmatthes/data/ks-projects-201801.csv'
df = pd.read_csv(file_path) # Linux or OSX

file_path = r'C:\Users\ehmatthes\data\ks-projects-201801.csv'
df = pd.read_csv(file_path) # Windows

>>> df.shape
(378661, 15)

>>> df.info()
RangeIndex: 378661 entries, 0 to 378660
Data columns (total 15 columns):
ID                  378661 non-null int64
name                378657 non-null object
category            378661 non-null object
main_category       378661 non-null object
currency            378661 non-null object
deadline            378661 non-null object
goal                378661 non-null float64
launched            378661 non-null object
pledged             378661 non-null float64
state               378661 non-null object
backers             378661 non-null int64
country             378661 non-null object
usd pledged         374864 non-null float64
usd_pledged_real    378661 non-null float64
usd_goal_real       378661 non-null float64
dtypes: float64(5), int64(2), object(8)
memory usage: 43.3+ MB

Filtering with boolean array


#查看第一行
>>> df.iloc[1,:]
ID                                                     1000003930
name                Greeting From Earth: ZGAC Arts Capsule For ET
category                                           Narrative Film
main_category                                        Film & Video
currency                                                      USD
deadline                                               2017-11-01
goal                                                        30000
launched                                      2017-09-02 04:43:57
pledged                                                      2421
state                                                      failed
backers                                                        15
country                                                        US
usd pledged                                                   100
usd_pledged_real                                             2421
usd_goal_real                                               30000
Name: 1, dtype: object

#根据条件筛选特定行:美国本土项目,筹资金额大于等于30000美刀
>>> df_us = df[df['country']=='US']
>>> df_us30000 = df_us[df_us['goal']>=30000]

#[43312 rows x 15 columns]

Basic Data Description


>>> df_us[['backers','goal','pledged']].describe()
             backers          goal       pledged
count  292627.000000  2.926270e+05  2.926270e+05
mean      113.078615  4.403497e+04  9.670193e+03
std       985.723400  1.108372e+06  9.932942e+04
min         0.000000  1.000000e-02  0.000000e+00
25%         2.000000  2.000000e+03  4.100000e+01
50%        14.000000  5.250000e+03  7.250000e+02
75%        60.000000  1.500000e+04  4.370000e+03
max    219382.000000  1.000000e+08  2.033899e+07

Arithmetics (+,-,/,//,*,**)


>>> df_us['percentage'] = df_us['pledged']/df_us['goal']

#去掉warning
df_us.copy().loc[:,'percentage'] = df_us['pledged']/df_us['goal']
Sorting and Ranking

When sorting a DataFrame, you can use the data in one or more columns as the sort keys. To do so, pass one or more column names to the by option of sort_values.


>>> df_us.sort_values(by='goal', ascending=False)

>>> df_us.head().sort_values(by=['main_category','goal'], 
...: ascending=[True,False])
             ID  ... percentage
2  1.000004e+09  ...   0.004889
1  1.000004e+09  ...   0.080700
4  1.000011e+09  ...   0.065795
5  1.000014e+09  ...   1.047500
3  1.000008e+09  ...   0.000200

>>> df_us.head().rank()
    ID  name  category  ...  usd_pledged_real  usd_goal_real  percentage
1  1.0   2.0       3.5  ...               4.0            3.0         4.0
2  2.0   5.0       3.5  ...               2.0            4.0         2.0
3  3.0   4.0       2.0  ...               1.0            1.0         1.0
4  4.0   1.0       1.0  ...               3.0            2.0         3.0
5  5.0   3.0       5.0  ...               5.0            5.0         5.0

>>> df_s=pd.DataFrame({'sales':[100,200,300,200]})
   sales
0    100
1    200
2    300
3    200

>>> df_s.rank()
   sales
0    1.0
1    2.5
2    4.0
3    2.5

>>> df_s.rank(method='first') #数值
   sales
0    1.0
1    2.0
2    4.0
3    3.0

min and max


>>> df_s.rank(method='min')
   sales
0    1.0
1    2.0
2    4.0
3    2.0

>>> df_s.rank(method='max')
   sales
0    1.0
1    3.0
2    4.0
3    3.0
Counting

>>> df_us['main_category'].value_counts()

Film & Video    51922
Music           43238
Publishing      31726
Games           24636
Art             22311
Design          21690
Technology      21556
Food            19941
Fashion         16584
Comics           8910
Theater          8709
Photography      7988
Crafts           6648
Journalism       3540
Dance            3228
Name: main_category, dtype: int64

>>> df_us['main_category'].value_counts(
...: normalize = True)
Film & Video    0.177434
Music           0.147758
Publishing      0.108418
Games           0.084189
Art             0.076244
Design          0.074122
Technology      0.073664
Food            0.068145
Fashion         0.056673
Comics          0.030448
Theater         0.029761
Photography     0.027298
Crafts          0.022718
Journalism      0.012097
Dance           0.011031
Name: main_category, dtype: float64
Searching

>>> df_us['main_category'].isin(['Music','Games'])
>>> df_us[df_us['main_category'].isin(['Music','Games'])==True]
Time

from datetime import datetime

>>> now = datetime.now()
>>> now
datetime.datetime(2020, 10, 29, 11, 50, 46, 908483)

>>> now.year, now.month, now.day
(2020, 10, 29)

>>> delta = datetime(2011,1,7) - datetime(2008, 6, 24)
>>> delta.days
926

>>> from datetime import timedelta #only for day, hour, second
>>> datetime(2011,1,7) + timedelta(12)
datetime.datetime(2011, 1, 19, 0, 0)

Converting between String and Datetime


>>> date_1 = df_us.loc[1,'launched']
>>> date_1
'2017-09-02 04:43:57'

>>> stamp=datetime.strptime(date_1,'%Y-%m-%d %H:%M:%S')
datetime.datetime(2017, 9, 2, 4, 43, 57)
>>> type(stamp)
datetime.datetime

>>> stamp.strftime('%d-%m-%Y') 
'02-09-2017'

%Y Four-digit year
%y two-digit year
%m two-digit month
%B Month name
%d two-digit day
%W week number
%H Hour in 24-h
%I Hour in 12-h
%S Second
%F shortcut Y-M-D
%D shortcut m/d/y

Parse


>>> from dateutil.parser import parse
>>> parse('2017-09-02 04:43:57')
datetime.datetime(2017, 9, 2, 4, 43, 57)

>>> stamp_0 =pd.to_datetime('2017-09-02 04:43:57')
>>> stamp_0
Timestamp('2017-09-02 04:43:57')

Calculating the time period


>>> df_us['launched_time'] = pd.to_datetime(df_us['launched'])
>>> df_us['deadline_time'] = pd.to_datetime(df_us['deadline'])
>>> df_us['period'] = df_us['deadline_time']-df_us['launched_time'] 
>>> df_us['period']
1        59 days 19:16:03
2        44 days 23:39:10
3        29 days 20:35:49
4        55 days 15:24:57
5        34 days 10:21:33
      
378656   29 days 21:24:30
378657   26 days 20:24:46
378658   45 days 04:19:30
378659   30 days 05:46:07
378660   27 days 14:52:13
Name: period, Length: 292627, dtype: timedelta64[ns]

Converting the time to numbers


>>> df_us['period_num'] = df_us['period']/timedelta(1)
>>> df_us['period_num']
1         59.802813
2         44.985532
3         29.858206
4         55.642326
5         34.431632
   
378656    29.892014
378657    26.850532
378658    45.180208
378659    30.240359
378660    27.619595
Name: period_num, Length: 292627, dtype: float64

Filtering by date


>>> df_us[(df_us['launched_time']>='20150101')]
>>> df_us[(df_us['launched_time']>='20150101')& (df_us['launched_time']<='20151231')]
                ID  ... period_num
4       1000011046  ...  55.642326
15      1000064368  ...  29.909109
17      1000068480  ...  29.110486
38      1000134913  ...  34.092025
49      1000197321  ...  40.050185
           ...  ...        ...
378600   999687927  ...  59.057986
378616    99977040  ...  29.821157
378635    99987261  ...  29.057477
378639   999884445  ...  29.455394
378644   999934908  ...  21.685255
[53467 rows x 19 columns]

Index by Timestamps


>>> df_ustime = df_us.set_index(['launched_time'])
>>> df_ustime
                             ID  ... period_num
launched_time                    ...           
2017-09-02 04:43:57  1000003930  ...  59.802813
2013-01-12 00:20:50  1000004038  ...  44.985532
2012-03-17 03:24:11  1000007540  ...  29.858206
2015-07-04 08:35:03  1000011046  ...  55.642326
2016-02-26 13:38:27  1000014025  ...  34.431632
                        ...  ...        ...
2014-09-17 02:35:30   999976400  ...  29.892014
2011-06-22 03:35:14   999977640  ...  26.850532
2010-07-01 19:40:30   999986353  ...  45.180208
2016-01-13 18:13:53   999987933  ...  30.240359
2011-07-19 09:07:47   999988282  ...  27.619595
[292627 rows x 19 columns]

>>> df_ustime.loc['20170902'] # index重复
>>> df_ustime.loc['20170902':'20170930']

Summarizing and Computing


>>> df_us.count(axis=1) #每行非空个数
>>> df_us.count(axis=0) #每列非空个数
>>> df_us['usd_pledged_real'].sum()
>>> df_us['usd_pledged_real'].mean()

.max()     .min()
.median()  .mode()
.var()     .std()
.quantile() #0-1

Correlation and Covariance


>>> data = pd.DataFrame({'Q1':[1,3,4,3,4],
...:                     'Q2':[2,3,1,2,3],
...:                     'Q3':[1,5,2,4,4]})
>>> data['Q1'].corr(data['Q3'])
0.4969039949999533

>>> data['Q1'].cov(data['Q3'])
1

>>> data.cov()
>>> data.corr()

Export .csv file


>>> out_col = ['deadline_time','period_num','launched_time']
>>> df_us.to_csv('out.csv',index=False,columns=out_col)

10.2 Pandas (4)

Data Visualization
Successful and Failed

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("ks-projects-201801.csv")
df_state = df['state'].value_counts()
print(df_state)
df_state_r=df_state['failed':'canceled']
df_state_r['others']=df_state['undefined':].sum()

explode=[0.05,0,0,0]
plt.pie(df_state_r.values, labels=df_state_r.index,\
explode=explode, autopct='%.0f%%',shadow=True)
plt.title("State", loc='center')
plt.savefig('state.jpg',dpi=300)
Category

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("ks-projects-201801.csv")
df_category = df['main_category'].value_counts()
df_category_r=df_category['Film & Video':'Fashion']
df_category_r['others']=df_category['Theater':'Dance'].sum()

plt.pie(df_category_r.values, labels=df_category_r.index,\
 autopct='%.0f%%',shadow=True)
plt.title("Category", loc='center')
plt.savefig('category.jpg',dpi=300)
Pledged

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("ks-projects-201801.csv")
df_pledged = df.sort_values(by='pledged',ascending=False).head(100)

plt.style.use('ggplot')
plt.plot(df_pledged['pledged'].values)
plt.title("Pledged", loc='center')
plt.xlabel("Top 100 projects", fontsize=10)
plt.ylabel("Amount", fontsize=10)
plt.savefig('pledged.jpg',dpi=300)
Time

import pandas as pd
import matplotlib.pyplot as plt

df = pd.read_csv("ks-projects-201801.csv")
df['launched_time'] = pd.to_datetime(df['launched'])
df['deadline_time'] = pd.to_datetime(df['deadline'])

def year_data(y):
    return df[(df['launched_time']>=str(y)) & (df['launched_time']< str(y+1))]
 
df_year_count=[]
df_year=list(range(2010,2018))
for y in range(2010,2018):
    df_year_count.append(year_data(y)['ID'].count())

plt.bar(df_year,df_year_count)
plt.title("2010-2017 Projects", loc='center')
plt.xlabel("Year", fontsize=10)
plt.ylabel("Amount", fontsize=10)
plt.savefig('year.jpg',dpi=300)
Time: Percentage

def year_data(y):
    return df[(df['launched_time']>=str(y)) & (df['launched_time']< str(y+1))]
 
df_year_count=[]
df_year=list(range(2010,2018))
for y in range(2010,2018):
    df_year_count.append(year_data(y)['ID'].count())
df_year_s=[]  
for y in range(2010,2018):
    df_year_s.append(year_data(y)[year_data(y)['state']=='successful']['ID'].count())

plt.bar(df_year,df_year_count, label='total')
plt.bar(df_year,df_year_s,label='successful')
plt.title("2010-2017 Projects", loc='center')
plt.xlabel("Year", fontsize=10)
plt.ylabel("Amount", fontsize=10)
plt.legend(loc="upper left")
plt.savefig('year_percentage.jpg',dpi=300)
Descriptive Analysis (unofficial)
  • For each column,
    • Strings: classification, percentage
    • Numbers: trend, zone
  • Two columns, control one and check the other
  • time, location, subject (people, country, firms, etc.)
  • Calculation: mean, variance, max, min, range, etc.
  • Calculation: multiple columns

Summary

  • Pandas
    • Reading: Python for Data Analysis, Chapter 5, 9, 11.1, 11.2
    • Reading: Python for Everybody, Chapter 15.1, 15.2, 16.1